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Recommender Systems

" |ntelligent system that assists users’ information seeking tasks
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" Goal: Suggesting items that best match users’ preferences
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Existing Recommendation Policies

» Considering recommendation as an offline optimization problem

" Following a greedy strategy to maximize the immediate rewards from users

ol H B " v
nxm i n x k kxm
B ED pEEEEs
5 4 4 i

4 5 3 4

o

[, Bl a)
e o8 @

System =

= Disadvantages
= QOverlooking real-time feedback

= QOverlooking the long-term influence on user experience
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Existing Recommendation Policies

» Considering recommendation as an offline optimization problem

" Following a greedy strategy to maximize the immediate rewards from users
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= Disadvantages
= QOverlooking real-time feedback

= QOverlooking the long-term influence on user experience
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Reinforcement Learning

" Goal: selecting actions to maximize future reward
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Reinforcement Learning

" Goal: selecting actions to maximize future reward
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= Value-based Reinforcement Learning
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Reinforcement Learning

" Goal: selecting actions to maximize future reward
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" Policy-based Reinforcement Learning
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Reinforcement Learning

" Goal: selecting actions to maximize future reward
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= Actor-Critic
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Reinforcement Learning for Recommendation Policies =

= Continuously updating the recommendation strategies during the interactions
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" Maximizing the long-term reward from users

Recommendation Session

ata Science and Engineering Lab



Outline

= Recommendations in Single Scenario

DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)
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User-System Interactions
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Challenges
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" Updating strategy according to user’s real-time feedback
" Diverse and complementary recommendations
" Displaying items in a 2-D page
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Actor-Critic
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Actor Design

" Goal: Generating a page of
recommendations according to

action a
user’s browsing history I
ho
= Challenges t
= Preference from real-time feedback I
= A set of complementary items
= Displaying items in a page t
state s
Actor
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Actor Architecture

" Goal: Generating a page of items according to user’s browsing history
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Embedding Layer

" Three types of information
= e item’s
= C;: item’s category

= f.: user’s feedback

ltem Embedding Feedback Embedding
Xi| = concat(E;, C;, F;) ‘
= tanh (concat(Wge; + bp, Wee; + b, Wr fi + br)) ) _°_' _ B e s S
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Page-wise CNN Layer
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RNN & Attention Layer

B > exp(Wahj + b,)

T User Preference
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Decoder

* Goal: Generating a page of items according to user’s preference

cur

pro
_.-- Apage of items (matrix)

€1 €2

v Task 1: Generating a set of items
v Task 2: Displaying items in a page

) E

Actor ">~ User preference (vector)
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Decoder

* Goal: Generating a page of items according to user’s preference

cur
pro
_.-- Apage of items (matrix)
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Decoder

- Generated Embeddings > Real Embeddings
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Critic Architecture

» Learning action-value function Q(s;a)
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Critic Architecture

» Learning action-value function Q(s;a)

cur
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= putting items in a page
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Outline

= Recommendations in Single Scenario

= DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)

DEERS - Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD’2018)
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Why Negative Feedback?

= What users may not like

= Positive: click or purchase
= Negative: skip or leave

= Advantage:

= Avoiding bad recommendation cases

= Challenges

= Negative feedback could bury the positive ones
= May not be caused by users disliking them
= Weak/wrong negative feedback can introduce noise
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Novel DQN Architecture

" |ntuition: Qs s_,a)
= recommend an item that is similar to the .
clicked/ordered items (left part) I
= while dissimilar to the skipped items )
(right part) | 12 ‘
| . by o
= RNN with Gated Recurrent Units 1 1
(GRU) to capture users’ sequential s, | a ‘ 5 | N |

preference \ \

GRU; - ... - GRU}, GRU; — ...— GRUy

Recently clicked Recently skipped
or ordered items items
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Weak or Wrong Negative Feedback

= Recommender systems often recommends items belong to the same category
(e.g., cell phone), while users click/order a part of them and skip others

Time State Item Category Feedback

1 1 a A skip
2 S9 a, B click
3 3 as A click
4 S4 as C skip
5 Ss5 as B skip
6 S6 ag A skip
7 7 a; C order

" The partial order of user’s preference over these two items in category B
= At time 2, we name a5 as the competitor item of a2

2 2
L(0) = Es,q,r,s [(y—Q(s+, S—,a; 9)) —a(Q(s+, s—,a;0)-0(s+, s—, af; 6)) ]
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Outline

= Recommendations in Single Scenario

= DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)

DEERS - Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD’2018)

DRN - A Deep Reinforcement Learning Framework for News Recommendation (WWW’2018)
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Framework

= Push

" Feedback

= Minor Update
= Major Update
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Effective Exploration

= Random exploration

= Harm the user experience in short term

W+ AW =W ®
= Multi-armed Bandit O,
: v
= Large variance P
N\
= Long time to converge » @ Keep Q

- Steps List L

Current Network Q

-

Get recommendation from Q and Q

Explore Network ()

Step towards

Probabilistic \
Interleave

Probabilistic interleave these two lists

Get feedback from user and compare the
performance of two network

4
Push to & x

Collect
feedback

< @
|_user | C 4 X

Feedback

If Q performs better, update Q towards it

ata Science and Engineering Lab

Model choice




Outline

= Recommendations in Single Scenario
= DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)
= DEERS - Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD’2018)
= DRN - A Deep Reinforcement Learning Framework for News Recommendation (WWW’2018)

= Recommendations in Multiple Scenarios

DeepChain - Whole-Chain Recommendations (CIKM’2020)
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Background

= Users sequentially interact with multiple scenarios

= Different scenario has different objective

Entrance Page Item Detail Page Shopping Cart Page Order Page

return
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Motivation

= Optimizing each recommender agent for each scenario

= |gnoring sequential dependency
= Missing information
= Sub-optimal overall objective 6

Entrance Page Item Detail Page
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Whole-Chain Recommendation

P Goal

= Jointly optimizing multiple recommendation strategies
= Maximizing the overall performance of the whole session Q(Si, at)
Critic
= Advantages 1
= Agents are sequentially activated state sy action a; !

= Agents share the same memory
= Agents work collaboratively

= Actor-Critic
= Actor: recommender agent in one scenario
= Critic: controlling actors
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Entrance Page Item Detail Page
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Optimization

Entrance Page
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Entrance Page
Yt = [an(sta at) - YQu (St41, 7T7,n(3t+1))
+ Ph(se, ar) - (Tt - WQM’(StHﬂT&(StH)))
+ p (s, ar) - 7| 1m
T [sz(st, at) - (Tt T 7@#’(5t+17772l(5t+1)))
+ pi(se, ar) - YQu(Se41, T (5141))

[
+ py(se,ap) - 1] 1q
Item Detail Page




Why Model-based RL?

= Advantages

= Reducing training data amount

requirement Yt — [pfn(st, at) 'WQM/(StH, W;n(SH—l))
» Performing accurate + Dy (s, ar) - (1 +YQu (Se41, Ty(5e41)) )
optimization of the Q-function i pfn(St, a) 'Tt] 1.,

-+ [pé(st, at) - (Tt + vQ (St 41, W&(Stﬂ)))
+ pi(se, ar) '/YQM’(St—i—laﬁf:n(St-l—l))
+ pd(staat) 'Tt} 14

|

Model-based
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Outline

= Recommendations in Single Scenario
= DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)
= DEERS - Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD’2018)
= DRN - A Deep Reinforcement Learning Framework for News Recommendation (WWW’2018)

= Recommendations in Multiple Scenarios

DeepChain - Whole-Chain Recommendations (CIKM’2020)

MA-RDPG - Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning
(WWW’2018)
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Overall Model Architecture

Action

Actor 1

*

Observation

=¥ =
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Critic -
I

A _

Action
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) Action . i
Observation Communic EEiian Observation
Reward ation Reward
L 4 ?Observation +

Observation

Environment
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Overall Model Architecture

> Critic -

A

Action Action

Observation Actor 1 Actor 2 Observation
. Acti - '
Observation R Communic EEiian Observation
Reward I ation I Reward
v | - —tG'bservéfion +
[ Environment ]
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Overall Model Architecture

> Critic -
A

Action Action
{ ————— _——-_————
[
| |

Observation I Actor 1 Actor 2 Observation
[Message |
\ - + _ / A= =7
. Acti - '
Observation ction Communic EEiian Observation

Reward ation Reward

v ?Observation %

[ Environment ]
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Detailed Structure of MA-RDPG

it-
1-250t-1

Message ht-1 I\/Iessage h¢
Timestep t-1 Timestep t
@Agent it @Agent it
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Detailed Structure of MA-RDPG

Message ht-1 I\/Iessage h¢
Timestep t-1 Timestep t
@Agent it @Agent it
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Detailed Structure of MA-RDPG

it-
1-250t-1

Timestep t-1 Timestep t
@Agent .1 @Agent it
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Outline

= Recommendations in Single Scenario

DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)
DEERS - Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD’2018)
DRN - A Deep Reinforcement Learning Framework for News Recommendation (WWW’2018)

= Recommendations in Multiple Scenarios

DeepChain - Whole-Chain Recommendations (CIKM’2020)

MA-RDPG - Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning
(WWW’2018)

RAM - Jointly Learning to Recommend and Advertise (KDD’2020)
DEAR - Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI’'2021)
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Reinforcement Learning for Advertisements

" Goal: maximizing the advertising impression revenue from advertisers
= Assigning the right ads to the right users at the right place

amazon ®

Facebook
Sponsored Products Ad Video Ads

% - :
Normal Recommendations

= Reinforcement learning for advertisements

= Continuously updating the advertising strategies & maximizing the long-term revenue
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Reinforcement Learning for Advertisements

- Challenges:

= Different teams, goals and models > suboptimal overall performance

Advertising Revenue User Experience

il

~I1_
S

VS

= Goal:

= Jointly optimizing advertising revenue and user experience
= KDD’2020, AAAI'2021
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Reinforcement Learning Framework

= Two-level Deep Q-networks:

= first-level: recommender system (RS)
= second-level: advertising system (AS)

RS AS
rs as
> —_
— 3
s
T
t as
i

state s; | | rewardr; action a;

| (@, a2)
i Tl

>3 P

g‘ St+1 A -

State: rec/ads browsing history
Action: a; = (a;°, a;”)

Reward: Tt(St,CLQS) and Tt(Staa?S)

Transition: St 10 S¢t1

ata Science and Engineering Lab



Recommender System

* Goal: long-term user experience or engagement

= Challenge: combinatorial action space

Recommender
System
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Cascading DQN for RS

Historical Rec P:ec @ @ \
. _RNN .
Historical Ads D¢ @:--@ -

I
(OO O O O
[QQC;)QQj

o

j€[L,k]

O(N) L Ok N: number of car\dldate items
k k: length of rec-list
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Advertising System

= Goal:

= maximize the advertising revenue

= minimize the negative influence of ads on user experience

= Decisions:
= interpolate an ad?
= the optimal location
= the optimal ad

ata Science and Engineering Lab
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Novel DQN for AS

" Three decisions:

1. interpolate an ad?
2. the optimal location
3. the optimal ad

RNN

@. R .@
RNN
Historical Ads p?d @ ) @

. IFVIR

TEC
Historical Rec Py

Context
RNN
Rec-list a:s a (1) - -a°()
) d
aditem o’ | I —

Decision 3
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Systems Update

= Target User:

= browses the mixed rec-ads list
= provides her/his feedback

-------

-------

I
Feedback |

« TTEET N\ \
Recommender Advertising
System System
4 4
1 |
e e e e — - L o e |

ata Science and Engineering Lab




Advantage

= The first individual DQN architecture that can simultaneously evaluate the Q-
values of multiple levels’ related actions

Q-Valuel ...... Q-Va|ueL Q'Value l l l
e et
Q56" 1 Qs g |QCsi, gty
: NS

Neural
Network

Neural
Network
Neural
Network

State ,v "ﬂﬂ
(a) (b) \P’\ action a?d\/
A
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Experiments

= Metrics:
= user dwelling time
= number of videos browsed

= advertising revenue Overall perf
verall performace

i i . Algorithms
Tiktok short video dataset Metrics || Values |looer ot g SRR
Object Quantit}r value 17.61 | 17.95 | 18.56 | 18.99 19.61 19.49
# session 1,000,000 : m;Pfotfe ) (1).103(5) 09.02050 05.06060 03.02060 . 0(:..06016
buser 185,209 value 879 | 890 | 929 | 937 || 9.76 | 9.68
# normal video | 17,820,066 Res | Tmprov(%) || 11.03 | 9.66 | 5.06 | 4.16 : 0.83
# ad video 10,806,778 p-value 0.000 | 0.000 | 0.000 [ 0.000 - 0.009
rec-list with ad 55.23% value 107 | 1.13 | 1.23 | 1.34 149 | 1.56
Rr¢v | Timprov(%) || 45.81 | 38.05 | 26.83 | 16.42 || 4.70 -
p-value || 0.000 | 0.000 | 0.000 | 0.000 || 0.001 -
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Outline

= Recommendations in Single Scenario
= DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)
= DEERS - Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD’2018)
= DRN - A Deep Reinforcement Learning Framework for News Recommendation (WWW’2018)
= Recommendations in Multiple Scenarios
= DeepChain - Whole-Chain Recommendations (CIKM’2020)

= MA-RDPG - Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning
(WWW’2018)

= RAM - Jointly Learning to Recommend and Advertise (KDD’2020)
= DEAR - Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
= Online Environment Simulator

= UserSim - User Simulation via Supervised Generative Adversarial Network (WWW’2021)
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Real-time Feedback

= The most practical and precise way is online A/B test

CONTROL

= Online A/B test is inefficient and expensive

= Taking several weeks to collect sufficient data . _ @

= Numerous engineering efforts _
- Real-time
: UserSim
= Bad user experience Feedback

VARIATION

System
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Overview

= Simulating users’ real-time feedback is challenging

= Underlying distribution of item sequences is extremely complex
= Data available to each user is rather limited

g~ e s
Generator | Discriminator
I

— e S0 -
) softmaxt o _']‘_ o

1
1 I1p Decoder [OBN0)

MLP
real action a 1 / \ ground truth feedback
dAiEl
NN ML

1 R P

Encoder T T
i iy - iy SRR R

Browsing History Browsing History real a or fake Gy(s)
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Optimization

® Discriminator

Feedback for
real items

sed iGN 7 )
— @ @0 @ [l (E,,.,,. 06D

[ + Espini, 108 Do(s, Go(s))}
FS&\ 2x K
Q- O £ Sum DG = Y Prsallels, Gols)
ground truth feedback FCy \\\ k=K+1
t \\ K
SR W60 = il
]1T ]NT eFTCH
NI NI ;
(I (I BINE

€1 N eEN fn real a or fake Gy(s)
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Optimization

Discriminator

od S
- _{Esaaaerdata [log medel (lk|87 a’? kSK)]
+ A Es,rwpdam [logpmodel(lk‘sy GQ(S), K<k§2K}I

L%nsup - = {E37adiata log D(b(S? a)
+ ESdiam log D¢(S7 G9(8)>}

—_——— = — < 2x K
[Q___Q: t \\\\§Um D¢(87G9(S)> - Z pmodel(lk|saG0(3))
ground truth feedback FCy \\\ k=K+1
t N K
o SHTTHT B IDT Wl Do) = 2 palels,)
]1T ]NT eFC1
NN :
(. [ BINE
€1 N eEN fn real a or fake Gy(s)
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Optimization

Discriminator

- unsup . sup

od S
- _{Esaaaerdata [log medel (lk|87 a’? kSK)]
+ A Es,rwpdam [logpmodel(lk‘sy GQ(S), K<k§2K}I

L%nsup - = {E37adiata log D(b(S? a)
+ ESdiam log D¢(S7 G9(8)>}

—_——— = — < 2x K
[Q___Q: t \\\\§Um D¢(87G9(S)> - Z pmodel(lk|saG0(3))
ground truth feedback FCy \\\ k=K+1
t N K
o SHTTHT B IDT Wl Do) = 2 palels,)
]1T ]NT eFC1
NN :
(. [ BINE
€1 N eEN fn real a or fake Gy(s)
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Optimization

" Generator

Lénsup - ESdiata [log D¢(S, G@(S))]

Decoder

FC Layers Output Layer l

PET ‘—|—> FC,|mp|FCy —>-i-(;_e_(;).i
@
1
| i i Fake Item ™~_
) |10 DRER 1] | |1 B l .
T A
1
1

o N Lo = L™ |+ B LG

~

supervised
—
component

real action a

€1 fi en fn

===
L& = Esampanlla —1Go ()3
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RL-based Recommender Training

(a) Netflix 0 (b) JD.com
6
9
5
) S 8
® Q)
= =
) o -
7 7
073 (@))]
P method S 6 method
5 —— Historical Logs —— Historical Logs
—— IRecGAN 5 —— IRecGAN
1 — UserSim — UserSim
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
training_step training_step

= Metric: average reward of a session

= Baselines: Historical Logs, IRecGAN
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RL-based Recommender Training

(a) Netflix 0 (b) JD.com
6
9
5
) S 8
® Q)
= =
) o -
7 7
073 (@))]
P method S 6 method
5 —— Historical Logs —— Historical Logs
—— IRecGAN 5 —— IRecGAN
1 — UserSim — UserSim
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
training_step training_step
|
|

= UserSim converges to the similar avg_reward with the one upon historical data
= UserSim performs much more stably than the one trained based upon IRecGAN
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Other Simulators

. t+1
Document RDM Sample i sj\ r(3t7 At’ at) at € At
Database Documents ! r N reward user’s choice
Y

- Actionst DI K-sized Siate i N y; state updated —
R ’ | state 8 : user’s past choices I

Document
Observable
Features

User Observable

Features RKxM

RK M

I

|

| \

i
. User Hidden RN . B | »
: . gy - ‘
: o [ |
: Choice=[1,K] —
i ’ =
1
1
1

Si
S User Transition _ L CE n(st,T?) Atc Tt ¢(st, AY)
Model RN State Features ]

available articles system display set user
RecSim @ Google GAN-PW @ Alibaba
Orgnic Tiser Sesslons ol il remmmnnee: policy deployment ---(reinforcement learning with ANC)
. A
custovmers -------- GAN-SD ----- * (customer feature ) l virtual platform
ey
P ) virtual customer
" Nol, | a—s
E-Commerce Publisher \ O ok —
-_ Website ( Website m_a MAIL g ; ’\"“ s —
..... o <

rewEard l
h ¢
RecoGym @ Criteo Virtual-Taobao @ Alibaba

ata Science and Engineering Lab




Outline

= Recommendations in Single Scenario
= DeepPage - Deep Reinforcement Learning for Page-wise Recommendations (RecSys’2018)
= DEERS - Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD’2018)
= DRN - A Deep Reinforcement Learning Framework for News Recommendation (WWW’2018)
= Recommendations in Multiple Scenarios
= DeepChain - Whole-Chain Recommendations (CIKM’2020)

= MA-RDPG - Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning
(WWW’2018)

= RAM - Jointly Learning to Recommend and Advertise (KDD’2020)

= DEAR - Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
" Online Environment Simulator

= UserSim - User Simulation via Supervised Generative Adversarial Network (WWW’2021)
= Surveys

= Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB’2019)
= Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)
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Conclusion
= Continuously updating the recommendation strategies during the interactions

Vs

Recommender ]
Agent J

vvY

.

state sy || rewardr; action a;

" Maximizing the long-term reward from users

Recommendation Session
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Future Directions

" |ncorporating more types of user-item interactions into recommendations

R . Z)‘ e
10 )
‘9 3-
.“.8 .{l-"'

Shopping Cart Repeat Purchase Favorites Dialog System  Dwelling Time

= Considering continuous time information for recommendations

At;  At, At
| |

i; I I3 bn  Um+i
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Reinforcement Learning for Search Engine

" Goal: finding and ranking a set of items based on a user query

Search Engine

amazonm"k Your Amazon.couk TodaysDeals GiftCards Sell Help
Shop by

Department ~ Search ‘ Al macbook n

Amazon.couk  Warehouse Deals S macbook pro in All Depart S r Amazg

Recommendations Advertisements

amazon
amazoncom Recommended for You

Amazon.com has new recommendations for you based on items you purchased or
told us you own.

LOOK INSIDE! LOOK INSIDE!

. L
Google pps Google :L s

116 of 140,880 results for “macbook”| MacPOOK Pro In Electronics & Pho

=

macbook pro in Compulers &

Relat machook air
machook pro 13 case

Computers & Accessories > GHz, 44
Laptops macbook air 13 case 112)
Portable Computer Sleeves macbook pro case
+See more
<% macbook air 13
Electronics & Photo >
Google Apps Google Apps Googlepedia: The HDMI Cables R
Deciphered: Compute in Administrator Guide: A Ultimate Google Phone Accessories macbook air case
the Cloud to Streamline Private-Label Web Resource (3rd Edition) )
Mobile Phone Cases &
Your Desktop Workspace Covers
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Reinforcement Learning for Search Engine

- Goal: finding and ranking a set of items based on a user query

= Query understanding: jointly learning the tokenization, spelling correction, query rewriting
and entity recognition, etc

. [ nti
tokenization spelllr?g que_r.y © tIFy.
correction rewriting recognition

1

raw structured
query query

Phone Accessories
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Reinforcement Learning for Search Engine

- Goal: finding and ranking a set of items based on a user query

= Query understanding: jointly learning the tokenization, spelling correction, query rewriting
and entity recognition, etc

= Ranking: directly optimizing user’s feedback, such as user clicks & dwelling time

Search Engine

—{ $earch |—

|
I N
amazon.. I >
| - [0 macbook : —
I K ook pro i ) r Amazd - —
| 6 0f 140,880 book zm‘ I CLICK :t& Tazl/’?/ked e
I il ' 18T p—
| ] state s; | |[rewardr,
I :Z:::: :\(r 1c3azase 12) I : ’r‘ alCt/I/ On alt
| 4 macbook air 13 | :/ t+1
1achook sti I :2 <
1

e —— — | ' Users
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Reinforcement Learning for Search Engine

- Goal: finding and ranking a set of items based on a user query

Query understanding: jointly learning the tokenization, spelling correction, query rewriting
and entity recognition, etc

= Ranking: directly optimizing user’s feedback, such as user clicks & stay time

= Session search: user’s behaviors of search results in the prior iteration will influence user’s
behaviors in the next search iteration

[ 1=
. q
| Sea rCh Eng| ne I "bollywood Icgislation boll d
I | Que ollywoo
amazon.. ! i i
: SSSSSS ‘ | ..laws in India..."€ D1 ¢ ) Ieglslatlon
o ad : | User Agent Search Engine Agent
“ oo R «
1 6 of 140,880 macbook g n o & e e I q2 bO”yWOOd law" Add |avvu H H ”
| ok , Theme Term = bollywood Remove “ legislation
acnoo: :;01133;38 GHz, 44 Added (+AQ) |aW |
| achook pro cas ™ : Removed (-Aq) = Ieglslatlon
I <% macbook air 13 I > bOl IyWOOd
I achook st I < Que 2
acbook I IaW
[ L I User Agent Search Engine Agent
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