

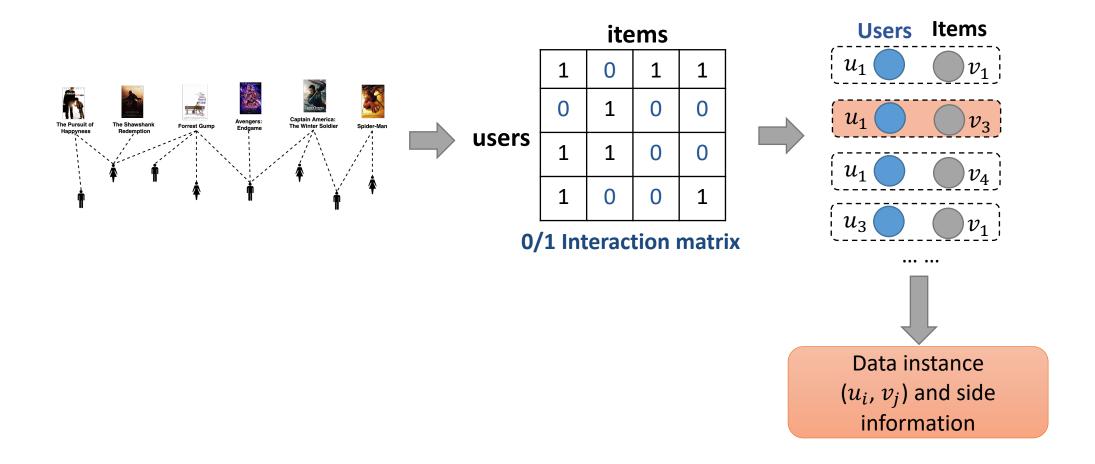
Graph Neural Network for Recommendations

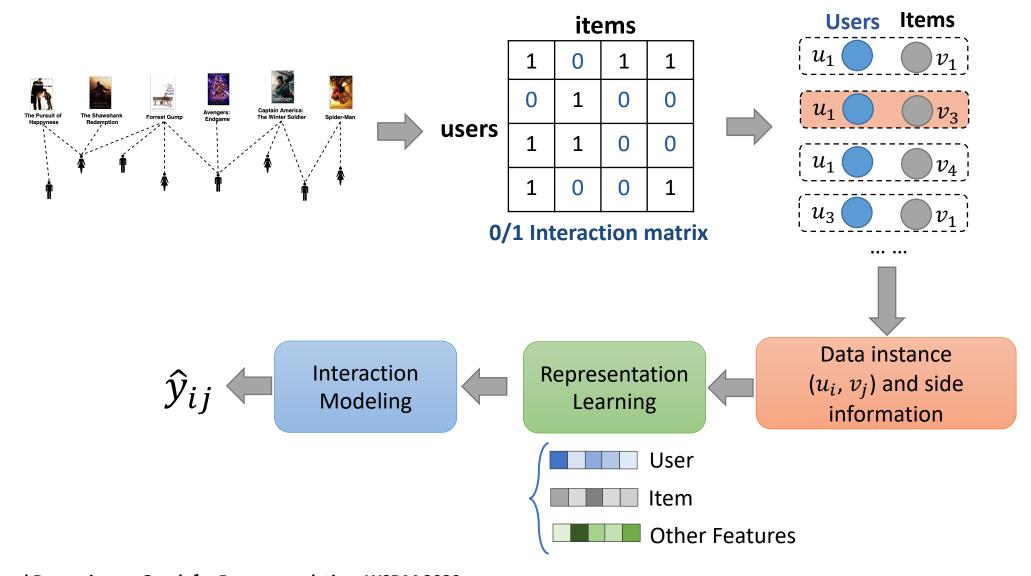
Wenqi Fan

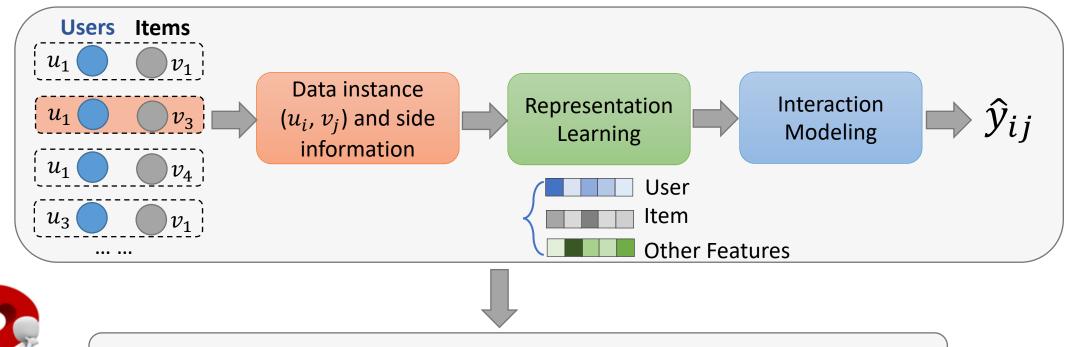
The Hong Kong Polytechnic University

https://wenqifan03.github.io, wenqifan@polyu.edu.hk

Tutorial website: https://deeprs-tutorial.github.io

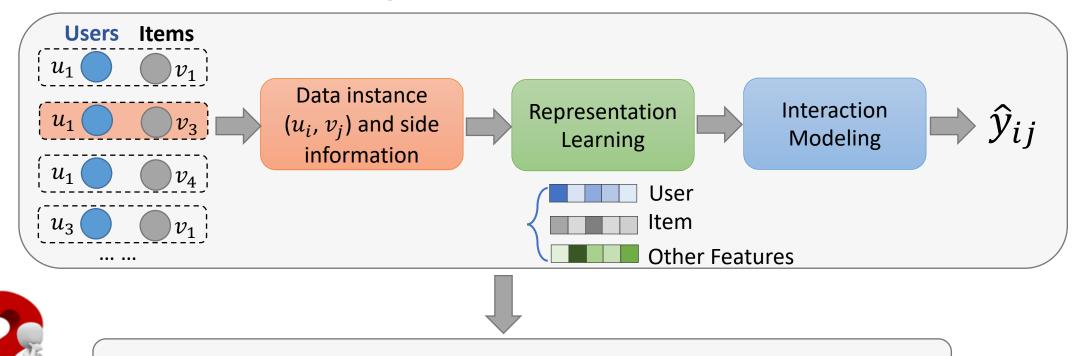




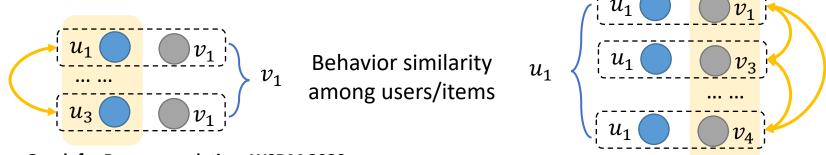


Information Isolated Island Issue

ignore implicit/explicit relationships among instances (High-order Connectivity)



ignore implicit/explicit relationships among instances (High-order Connectivity)

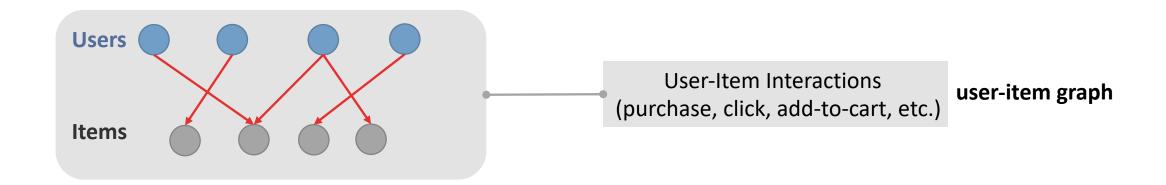


Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...

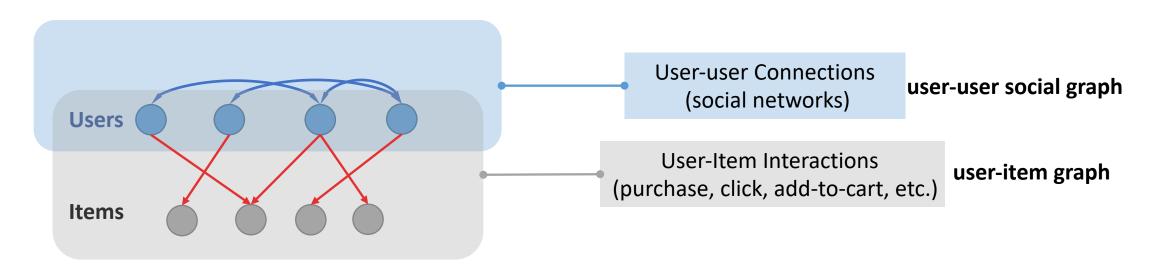
Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...



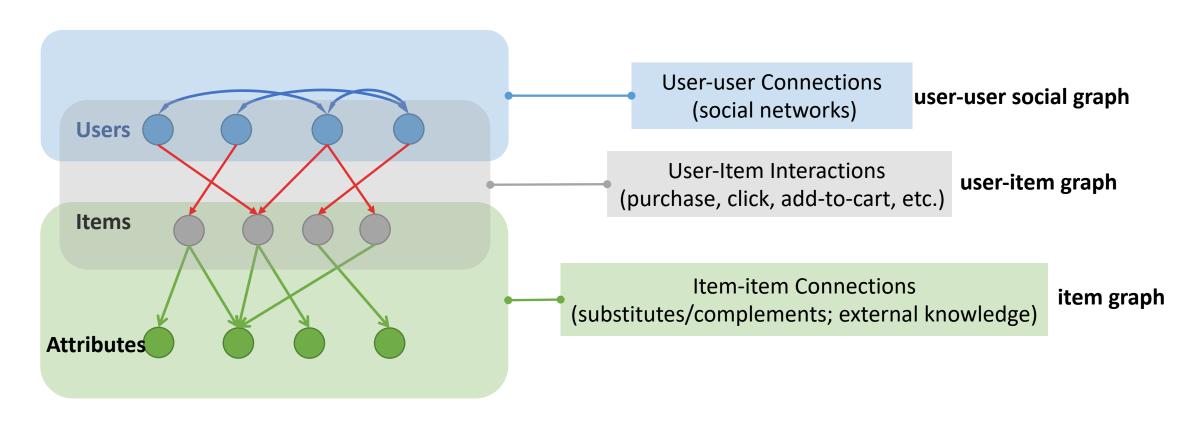
Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...

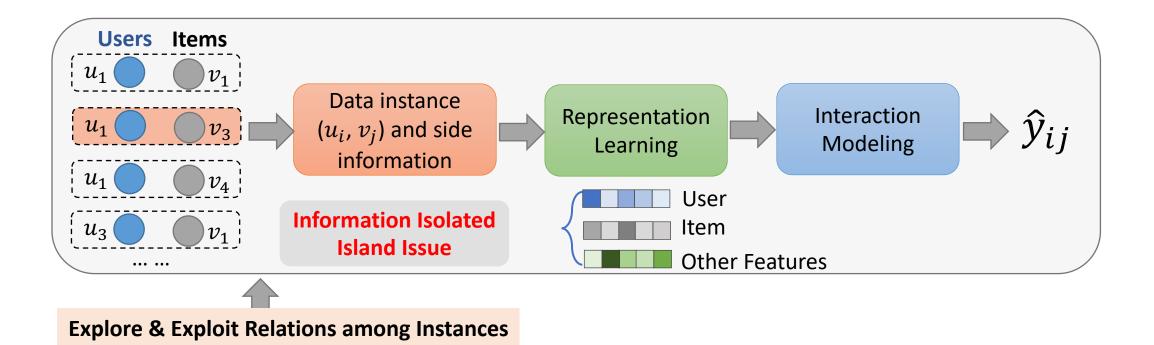


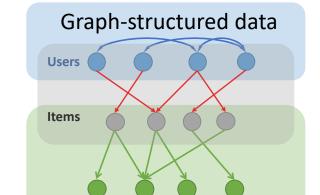
Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...



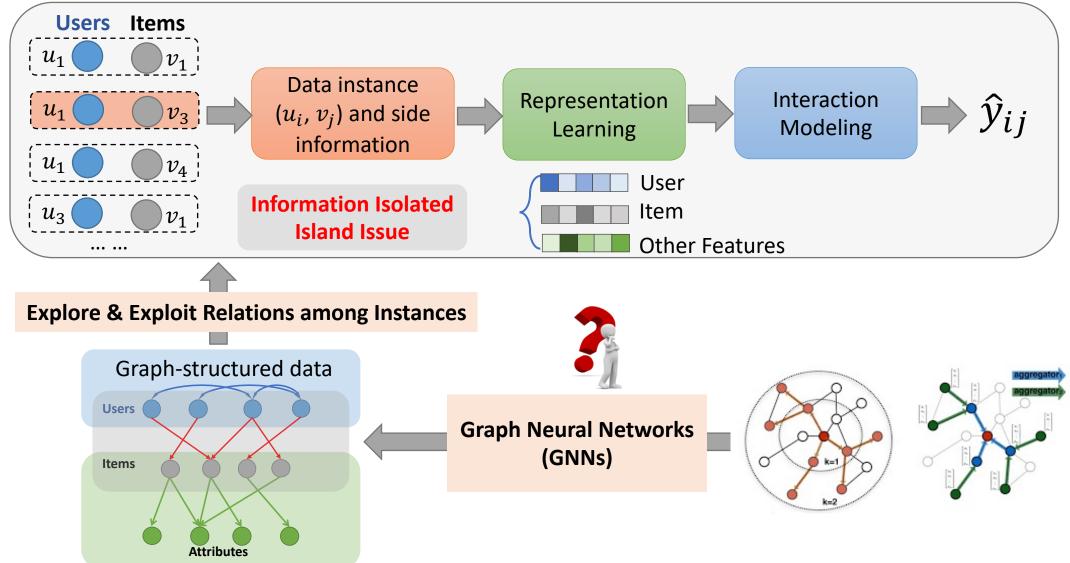
How to solve such issue?



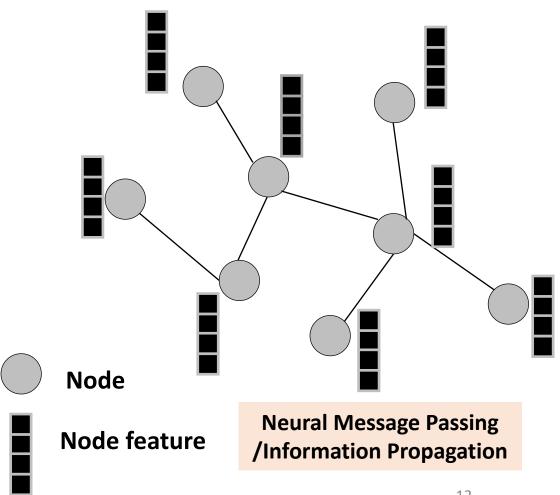


Attributes

How to solve such issue?

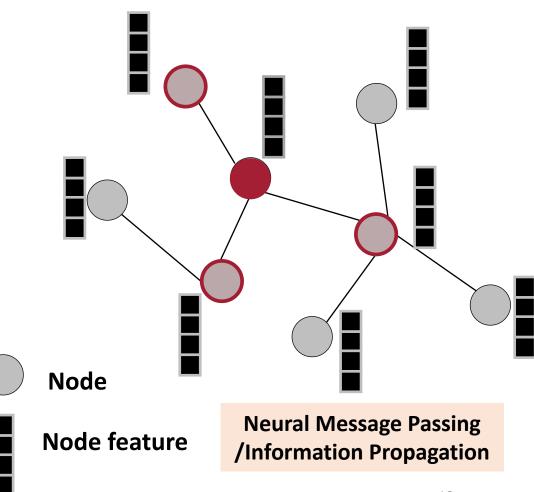


Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods.



Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods.

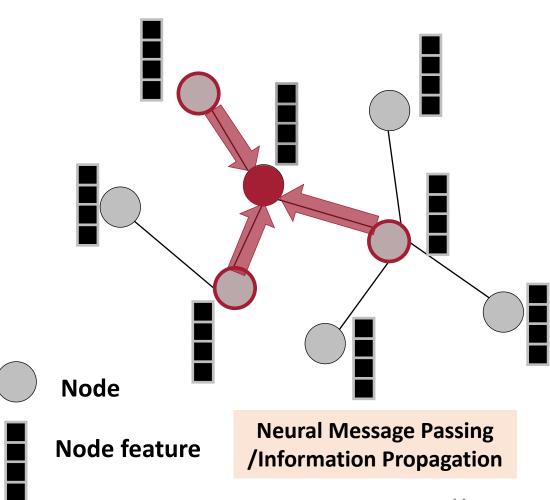
1. Model a local structural information (neighborhood) of a node;



Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods.

- 1. Model a local structural information (neighborhood) of a node;
- 2. Aggregation operation;
- 3. Representation update.

GNNs can naturally integrate node feature and the topological structure for graph-structured data.



Basic approach: Average neighbor messages and apply a neural network.

$$\mathbf{h}_v^0 = \mathbf{x}_v$$
 Initial 0-th layer embeddings are equal to node v 's features

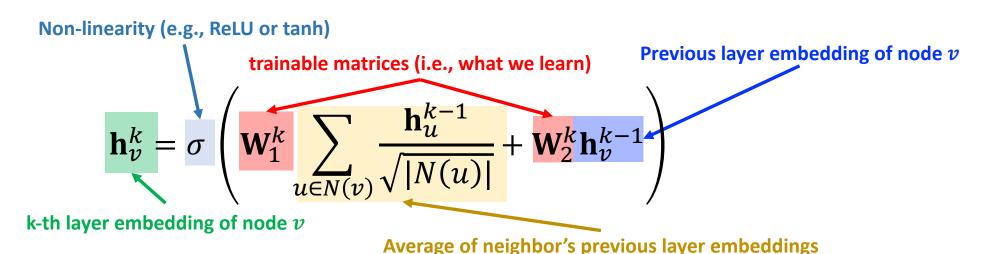
$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

k-th layer embedding of node $oldsymbol{v}$

$$\mathbf{z}_v = \mathbf{h}_v^k$$
 Embedding after k layers of neighborhood aggregation.

Basic approach: Average neighbor messages and apply a neural network.

$$\mathbf{h}_v^0 = \mathbf{x}_v$$
 Initial 0-th layer embeddings are equal to node v 's features



$$\mathbf{z}_v = \mathbf{h}_v^k$$
 Embedding after k layers of neighborhood aggregation.

> Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

> GraphSAGE:

> GAT:

> Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

> GraphSAGE:

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{1}^{k} \cdot \mathsf{AGG}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall_{u} \in N(u)\right\}\right), \mathbf{W}_{2}^{k} \cdot \mathbf{h}_{v}^{k}\right]\right)$$

Generalized Aggregation: mean, pooling, LSTM

> GAT:

> Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

> GraphSAGE:

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{1}^{k} \cdot \mathsf{AGG}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall_{u} \in N(u)\right\}\right), \mathbf{W}_{2}^{k} \cdot \mathbf{h}_{v}^{k}\right]\right)$$

Generalized Aggregation: mean, pooling, LSTM

> GAT:

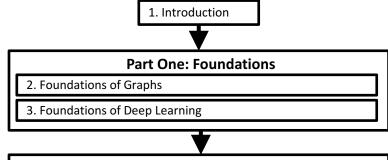
$$\mathbf{h}_{v}^{k} = \sigma \left(\sum_{u \in N(v)} \alpha_{v,u} \mathbf{W}^{k} \mathbf{h}_{u}^{k-1} \right)$$

Learned attention weights

Book: Deep Learning on Graphs

https://cse.msu.edu/~mayao4/dlg_book/

Yao Ma and Jiliang Tang, MSU



Part Two: Methods 4. Graph Embedding

- 5. Graph Neural Networks
- 6. Robust Graph Neural Networks
- 7. Scalable Graph Neural Networks
- 8. Graph Neural Networks for Complex Graphs
- 9. Beyond GNNs: More Deep Models for Graphs

Part Three: Applications

- 10. Graph Neural Networks in Natural Language Processing
- 11. Graph Neural Networks in Computer Vision
- 12. Graph Neural Networks in Data Mining
- 13. Graph Neural Networks in Bio-Chemistry and Healthcare

Part Four: Advances

- 14. Advanced Methods in Graph Neural Networks
- 15. Advanced Applications in Graph Neural Networks

GNNs based Recommendation

Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)

Collaborative Filtering with Side Information (Users/Items)

- **□** Social Recommendation (Users)
 - Graph Neural Network for Social Recommendation (WWW'19)
 - A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
 - A Graph Neural Network Framework for Social Recommendations (TKDE'20)
- **□** Knowledge-graph-aware Recommendation (Items)
 - Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
 - KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

GNNs based Recommendation

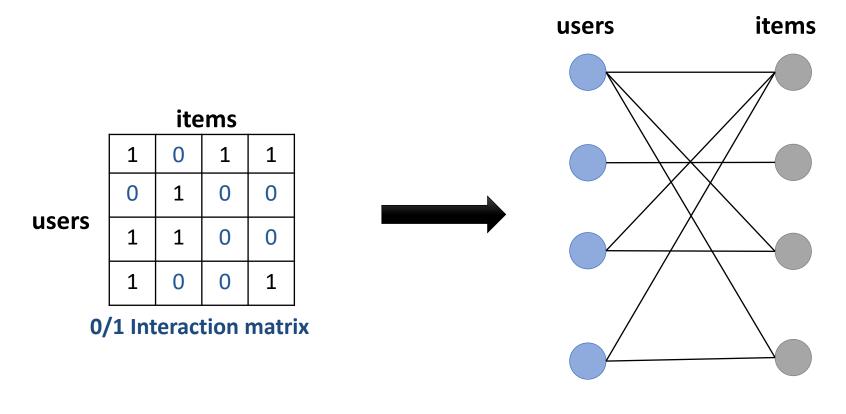
Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)

Collaborative Filtering with Side Information (Users/Items)

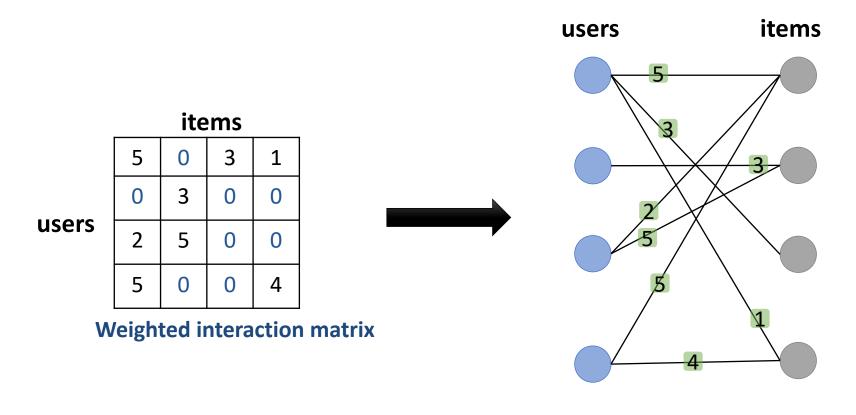
- **□** Social Recommendation (Users)
 - Graph Neural Network for Social Recommendation (WWW'19)
 - A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
 - A Graph Neural Network Framework for Social Recommendations (TKDE'20)
- **□** Knowledge-graph-aware Recommendation (Items)
 - Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
 - KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

Interactions as Bipartite Graph



Bipartite Graph

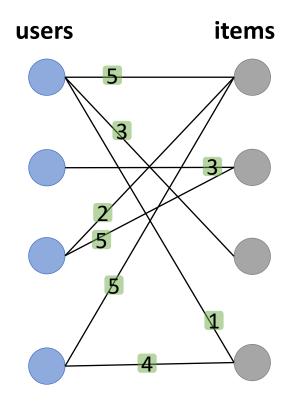
Interactions as Bipartite Graph



Bipartite Graph

User representation learning

Aggregate for each rating:
$$\mu_{i,r} = \sum_{j \in \mathcal{N}_{i,r}} \frac{1}{c_{ij}} W_r x_j$$



Bipartite Graph

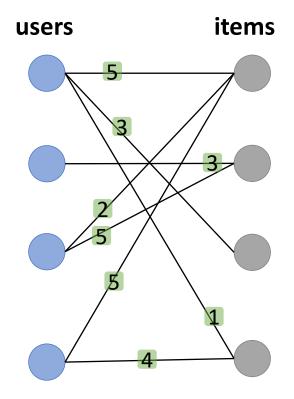
GCMC

User representation learning

Aggregate for each rating:
$$\mu_{i,r} = \sum_{j \in \mathcal{N}_{i,r}} \frac{1}{c_{ij}} W_r x_j$$

$$u_i = \mathbf{W} \cdot \sigma(accum(u_{i,1}, \dots, u_{i,R}))$$

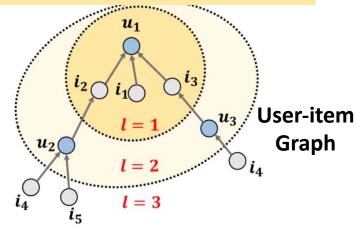
Item representation learning in a similar way



Bipartite Graph

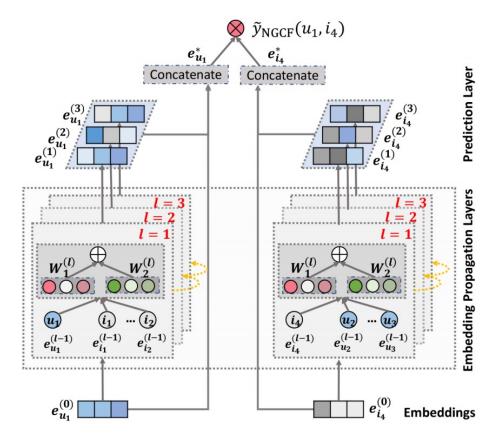
NGCF

High-order Connectivity for u_1



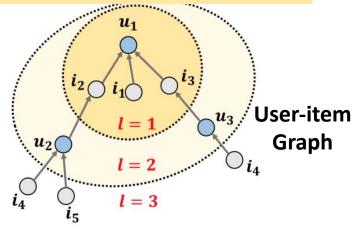
Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the user-item graph
- Construct information flows in the embedding space



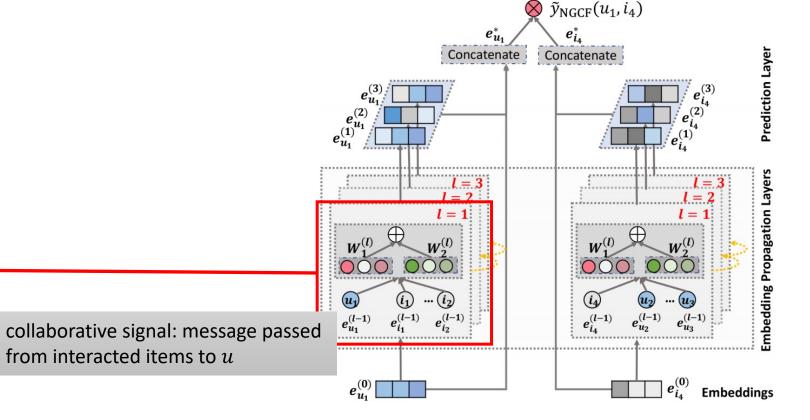
NGCF

High-order Connectivity for u_1



Embedding Propagation, inspired by GNNs

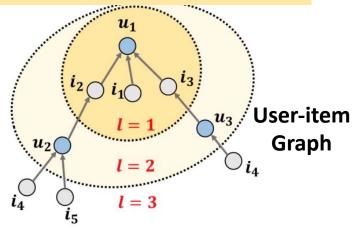
- Propagate embeddings recursively on the user-item graph
- Construct information flows in the embedding space



 $\mathbf{e}_{u}^{(l)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u}^{(l)} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}^{(l)}\right), \blacktriangleleft$

NGCF

High-order Connectivity for u_1



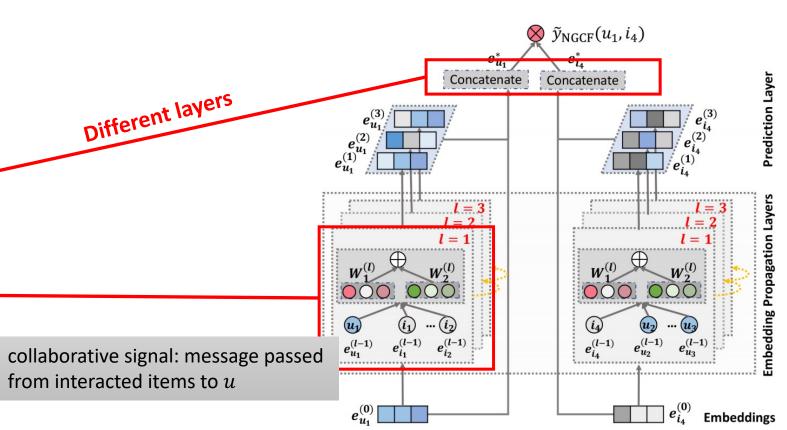
$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}, \quad \mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)},$$

$$\mathbf{e}_{u}^{(l)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u}^{(l)} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}^{(l)}\right), \longleftarrow$$

$$\begin{cases} \mathbf{m}_{u \leftarrow i}^{(l)} = p_{ui} \Big(\mathbf{W}_{1}^{(l)} \mathbf{e}_{i}^{(l-1)} + \mathbf{W}_{2}^{(l)} (\mathbf{e}_{i}^{(l-1)} \odot \mathbf{e}_{u}^{(l-1)}) \Big) \\ \mathbf{m}_{u \leftarrow u}^{(l)} = \mathbf{W}_{1}^{(l)} \mathbf{e}_{u}^{(l-1)} \end{cases}$$
 Self-connections

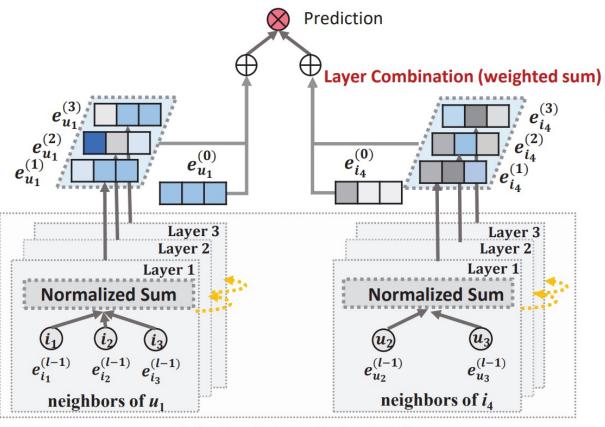
Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the user-item graph
- Construct information flows in the embedding space



LightGCN

Simplifying GCN for recommendation

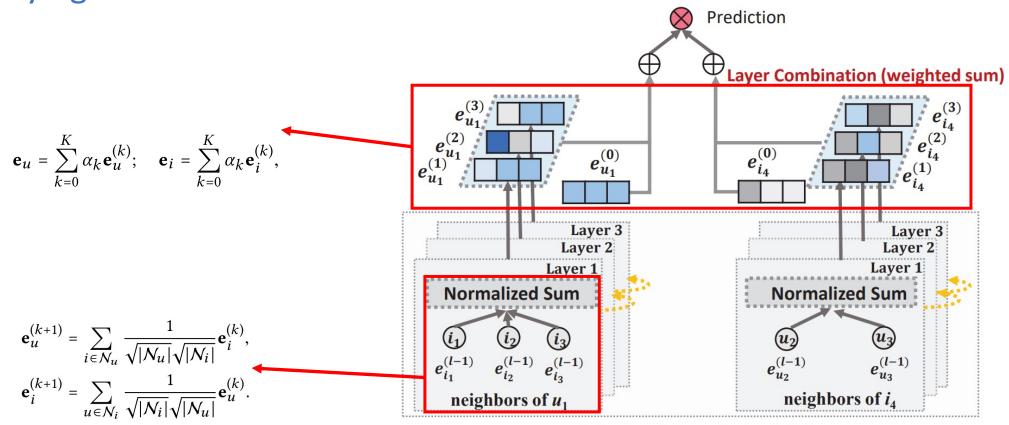


Light Graph Convolution (LGC)

discard feature transformation and nonlinear activation

LightGCN

Simplifying GCN for recommendation



Light Graph Convolution (LGC)

discard feature transformation and nonlinear activation

GNN based Recommendation

Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)

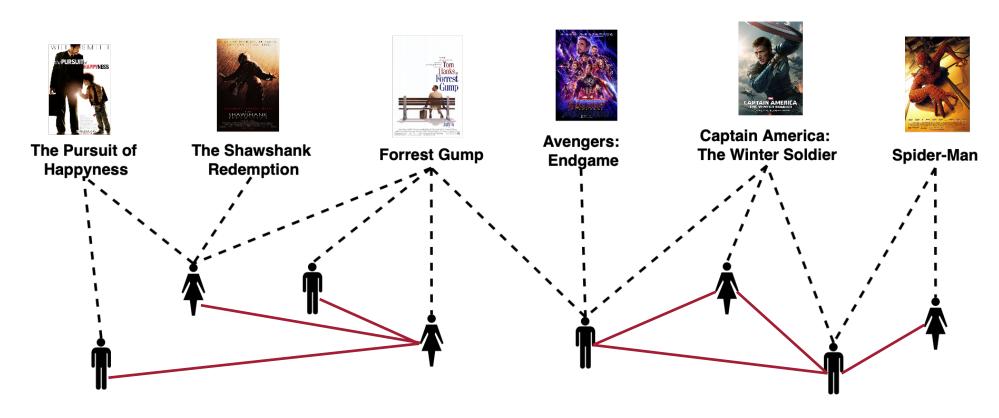
Collaborative Filtering with Side Information (Users/Items)

- **□** Social Recommendation (Users)
 - Graph Neural Network for Social Recommendation (WWW'19)
 - A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
 - A Graph Neural Network Framework for Social Recommendations (TKDE'20)
- **□** Knowledge-graph-aware Recommendation (Items)
 - Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
 - KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

Social Recommendation

Side information about users: social networks

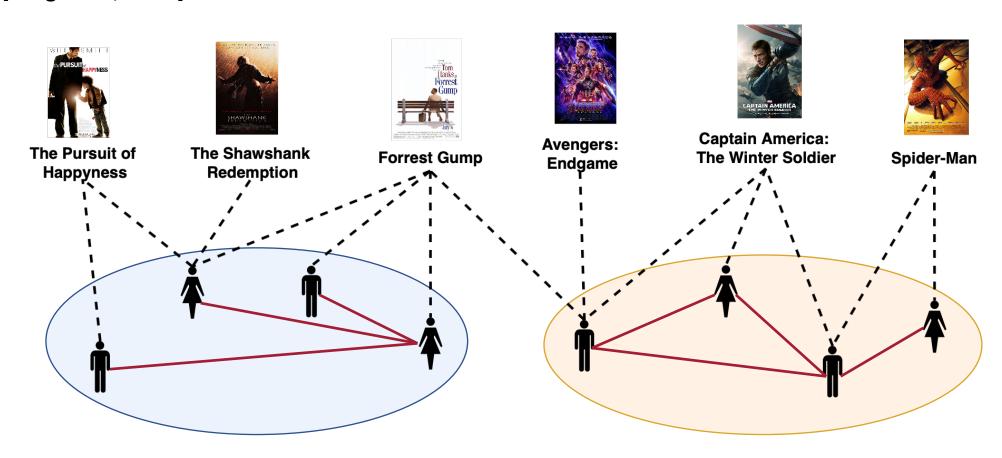
☐ Users' preferences are similar to or influenced by the people around them (nearer neighbours) [Tang et. al, 2013]



Social Recommendation

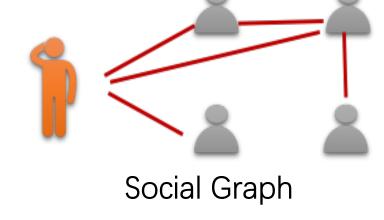
Side information about users: social networks

☐ Users' preferences are similar to or influenced by the people around them (nearer neighbours) [Tang et. al, 2013]



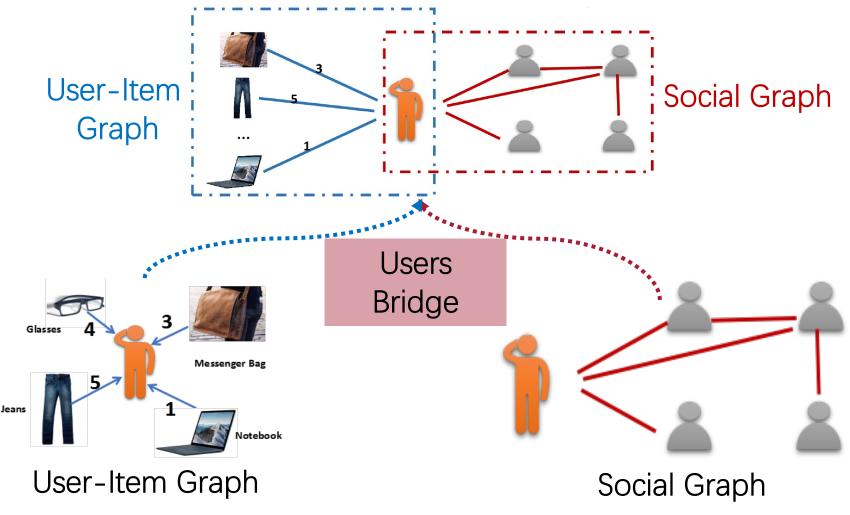
GraphRec

Graph Data in Social Recommendation



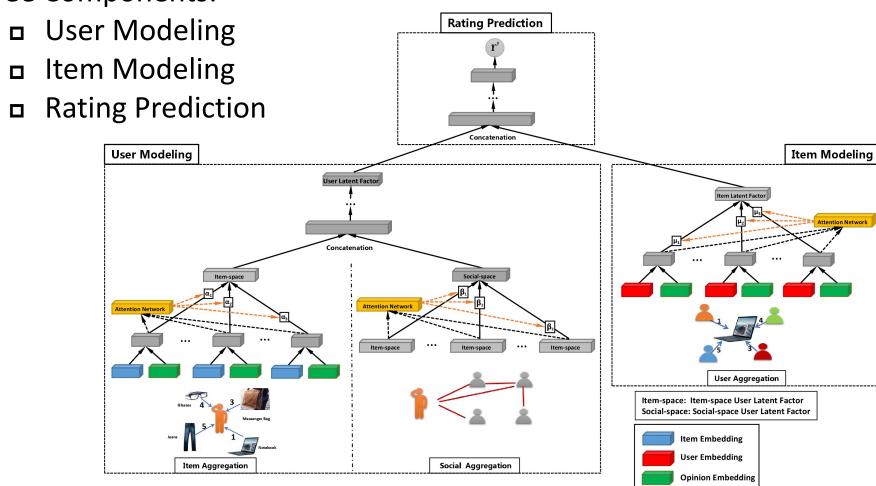
GraphRec

Graph Data in Social Recommendation



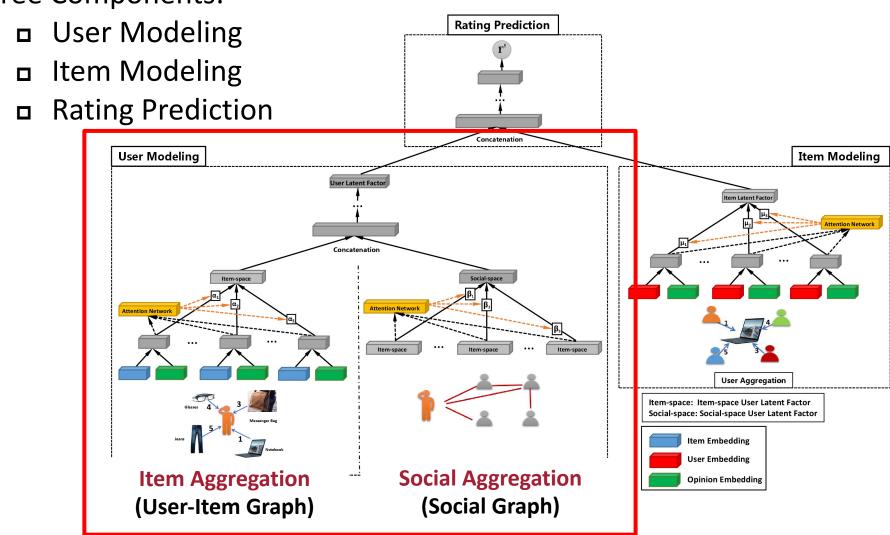
GraphRec

Three Components:



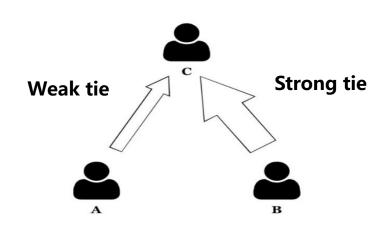
GraphRec

Three Components:



GraphRec: User Modeling

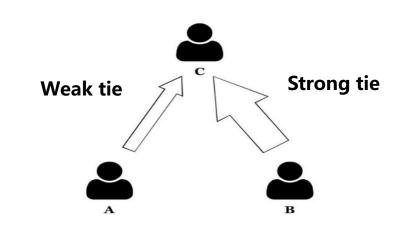
- ☐ Social Aggregation in user-user social graph
- ☐ Users are likely to share more similar tastes with strong ties than weak ties.



GraphRec: User Modeling

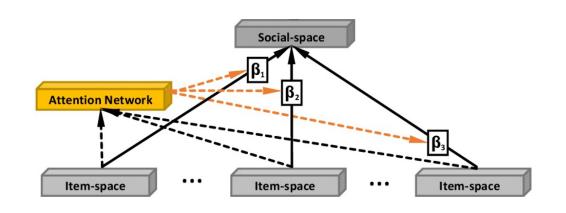
- ☐ Social Aggregation in user-user social graph
- ☐ Users are likely to share more similar tastes with strong ties than weak ties.

Attention network to differentiate the importance weight.

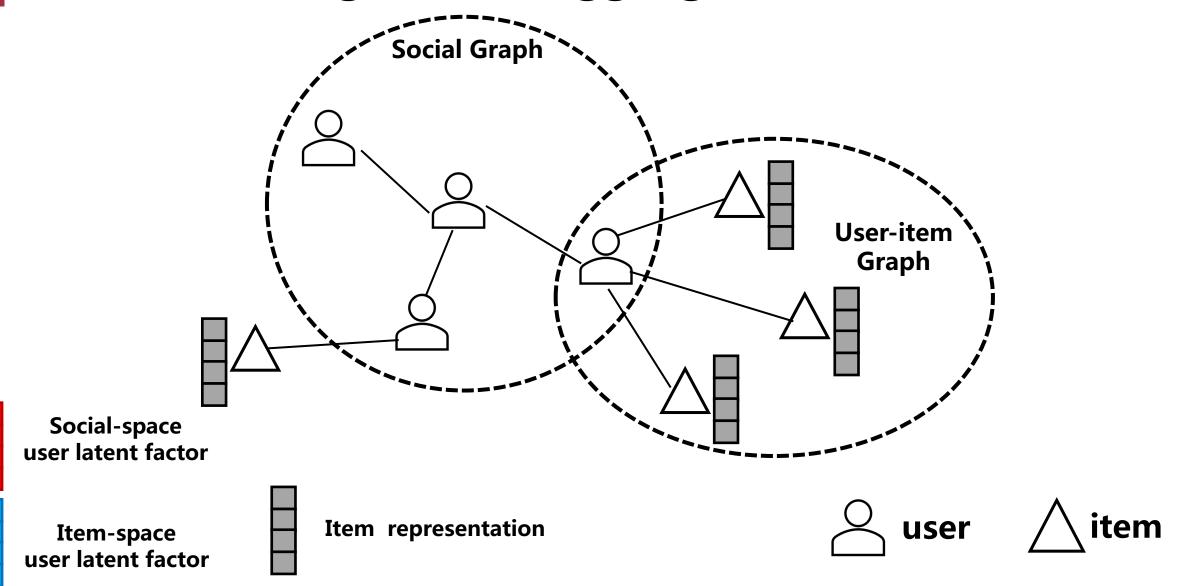


Aggregating item-space users messages from social neighbors

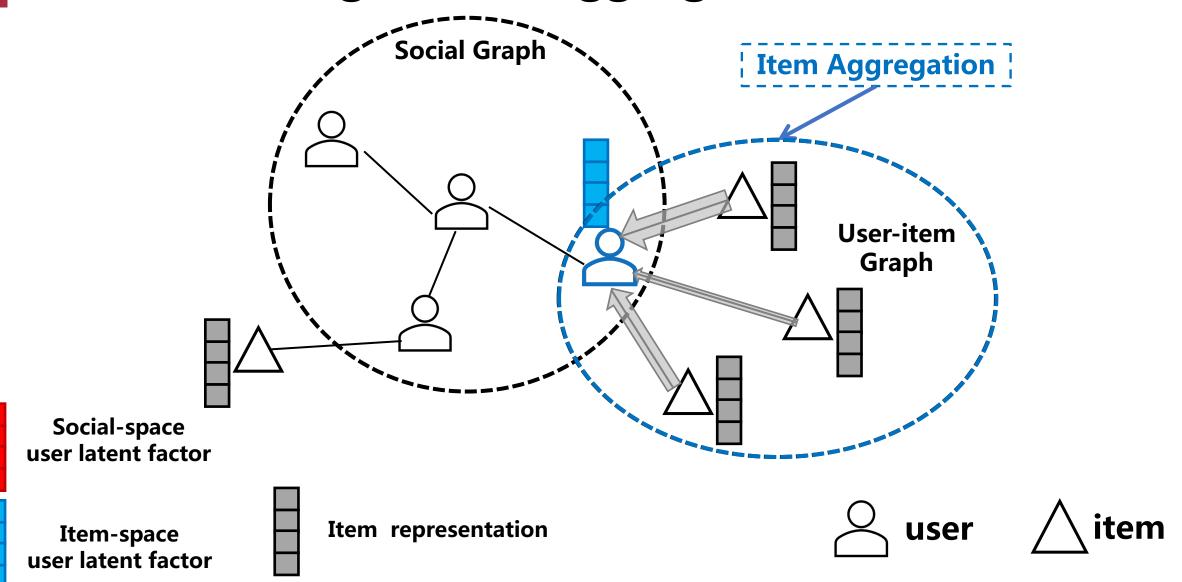
$$\mathbf{h}_{i}^{S} = \sigma(\mathbf{W} \cdot \left\{ \sum_{o \in N(i)} \beta_{io} \mathbf{h}_{o}^{I} \right\} + \mathbf{b})$$
attentive weight



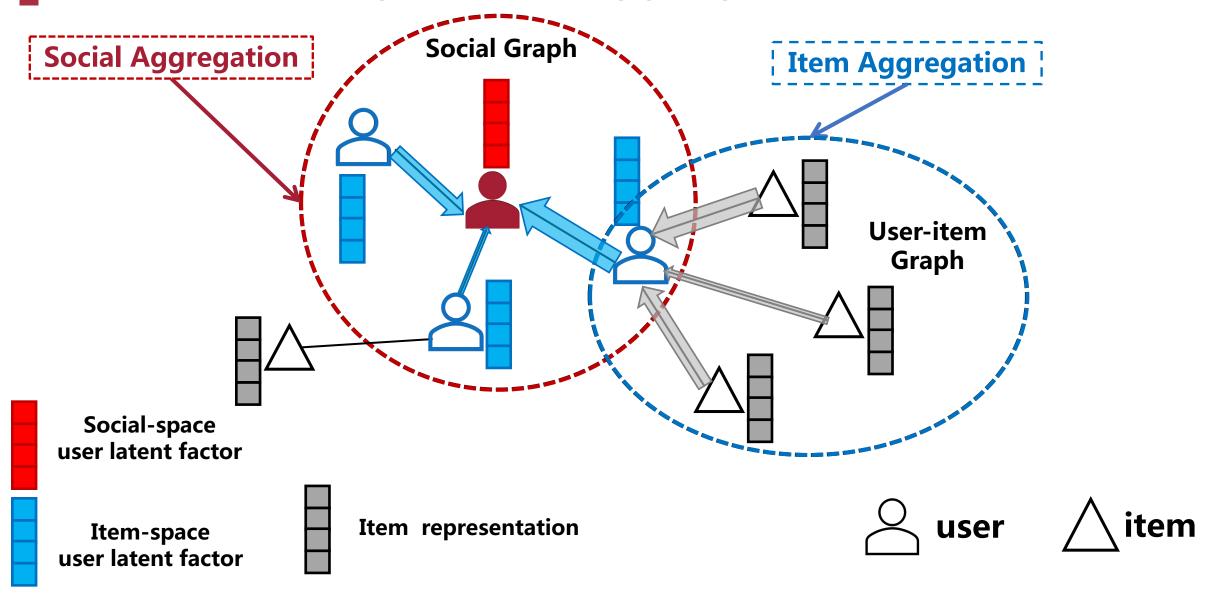
User Modeling: Social Aggregation



User Modeling: Social Aggregation



User Modeling: Social Aggregation



GNNs based Recommendation

Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)

■ Collaborative Filtering with Side Information (Users/Items)

- **□** Social Recommendation (Users)
 - Graph Neural Network for Social Recommendation (WWW'19)
 - A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
 - A Graph Neural Network Framework for Social Recommendations (TKDE'20)
- **□** Knowledge-graph-aware Recommendation (Items)
 - Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
 - KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

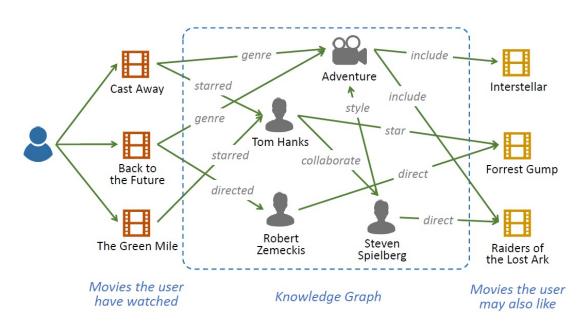
Side information about items: Knowledge Graph (KG)

Heterogeneous Graph:

Nodes: entities (Items)

> Edges: relations

Triples: (head, relation, tail)



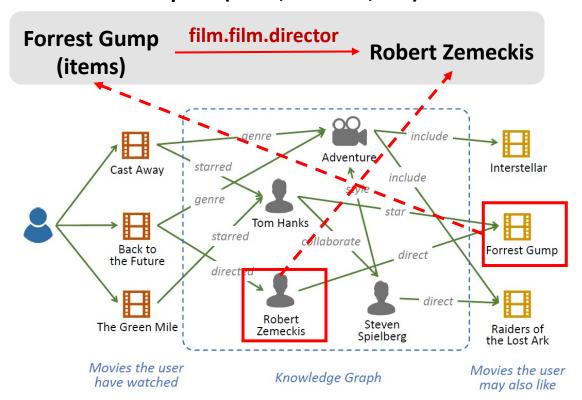
Side information about items: Knowledge Graph (KG)

Heterogeneous Graph:

Nodes: entities (Items)

Edges: relations

Triples: (head, relation, tail)



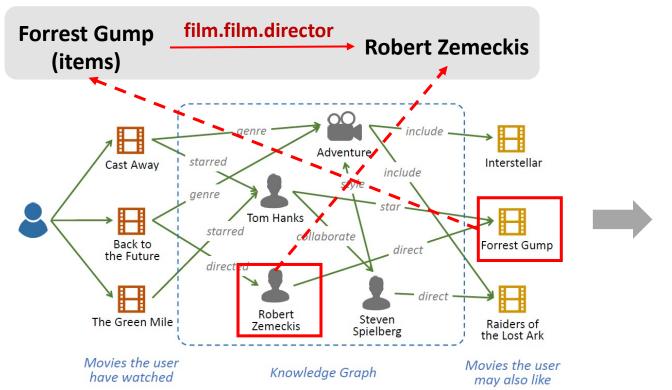
Side information about items: Knowledge Graph (KG)

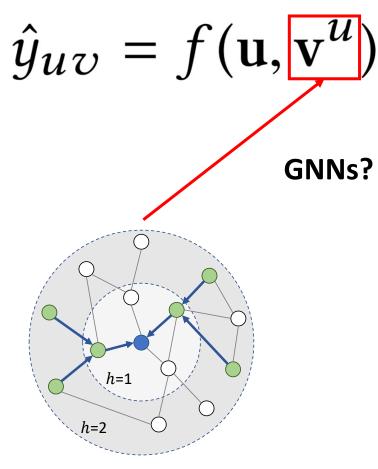
Heterogeneous Graph:

Nodes: entities (Items)

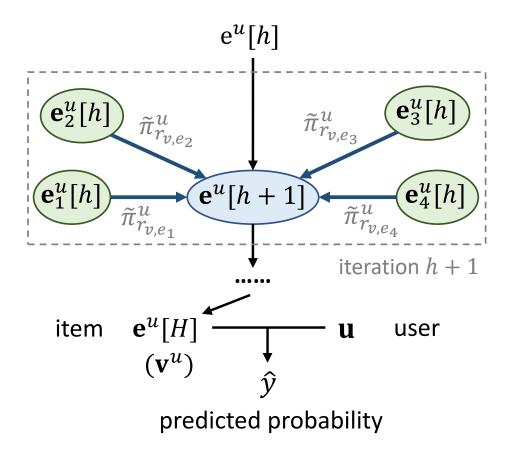
> Edges: relations

Triples: (head, relation, tail)



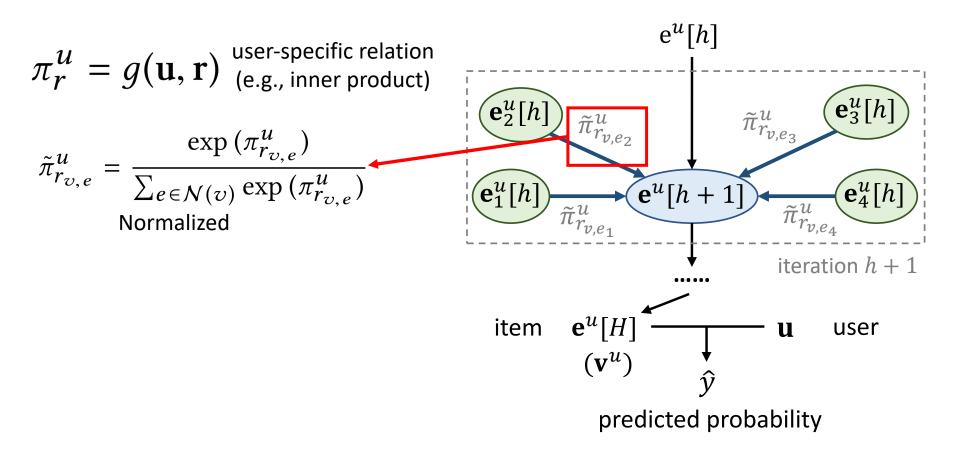


Representation Aggregation of neighboring entities



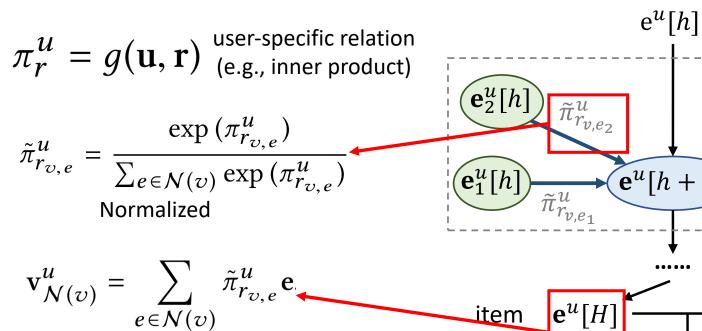
Transform a heterogeneous KG into a user-personalized weighted graph

Representation Aggregation of neighboring entities

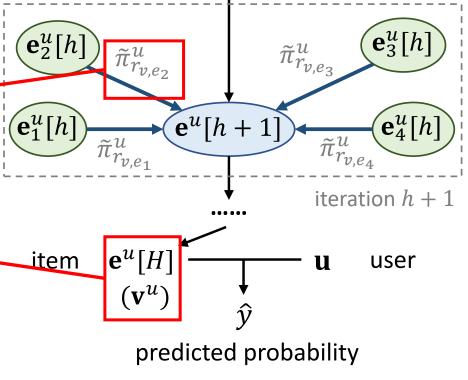


Transform a heterogeneous KG into a user-personalized weighted graph

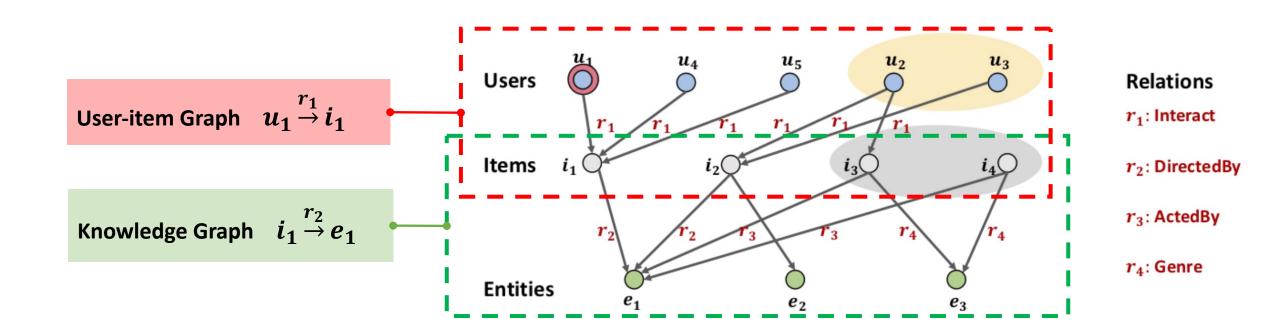
Representation Aggregation of neighboring entities

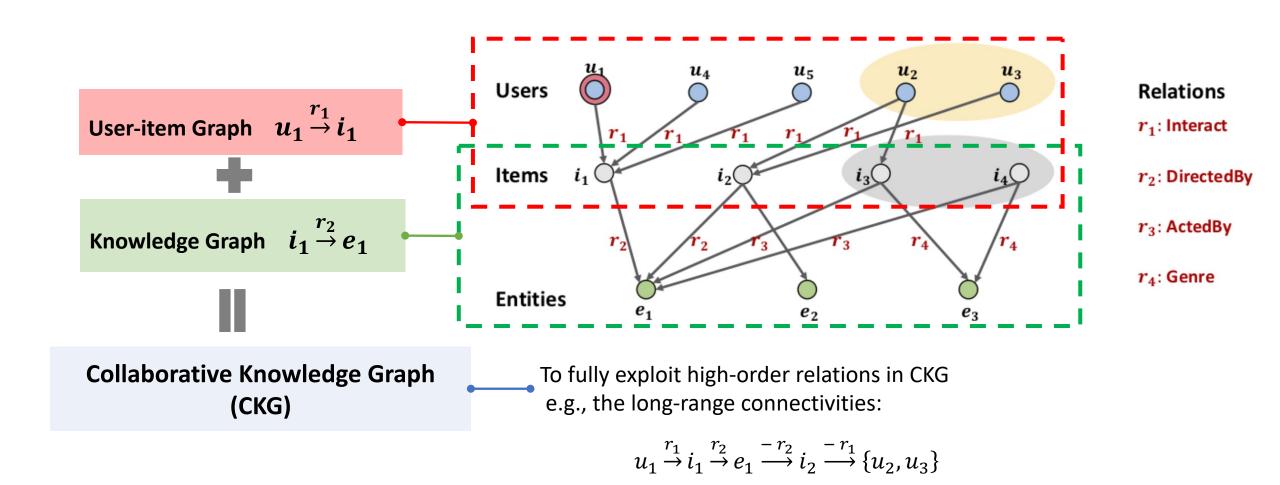


$$\hat{y}_{uv} = f(\mathbf{u}, \mathbf{v}^u)$$

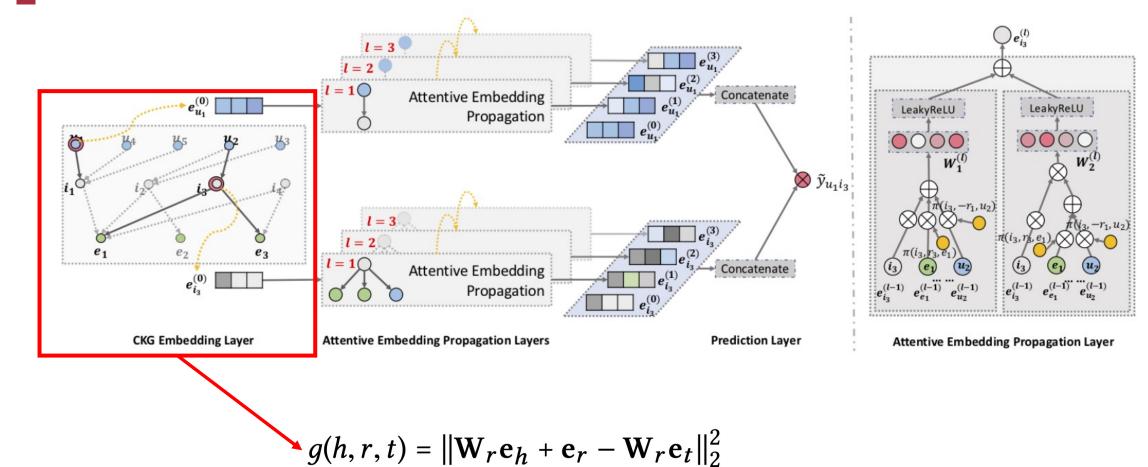


Transform a heterogeneous KG into a user-personalized weighted graph

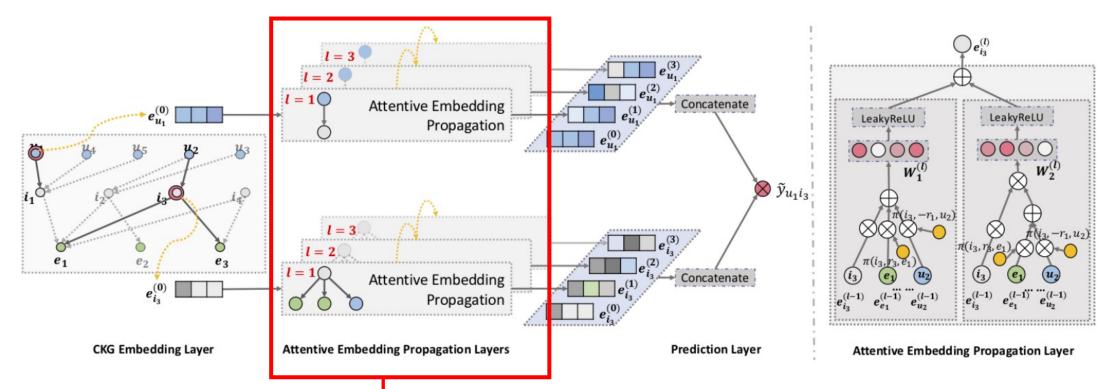




 $u_1 \stackrel{r_1}{\rightarrow} i_1 \stackrel{r_2}{\rightarrow} e_1 \stackrel{-r_3}{\longrightarrow} \{i_3, i_4\}$



 $\mathcal{L}_{\text{KG}} = \sum_{(h,r,t,t') \in \mathcal{T}} -\ln \sigma \Big(g(h,r,t') - g(h,r,t) \Big)$

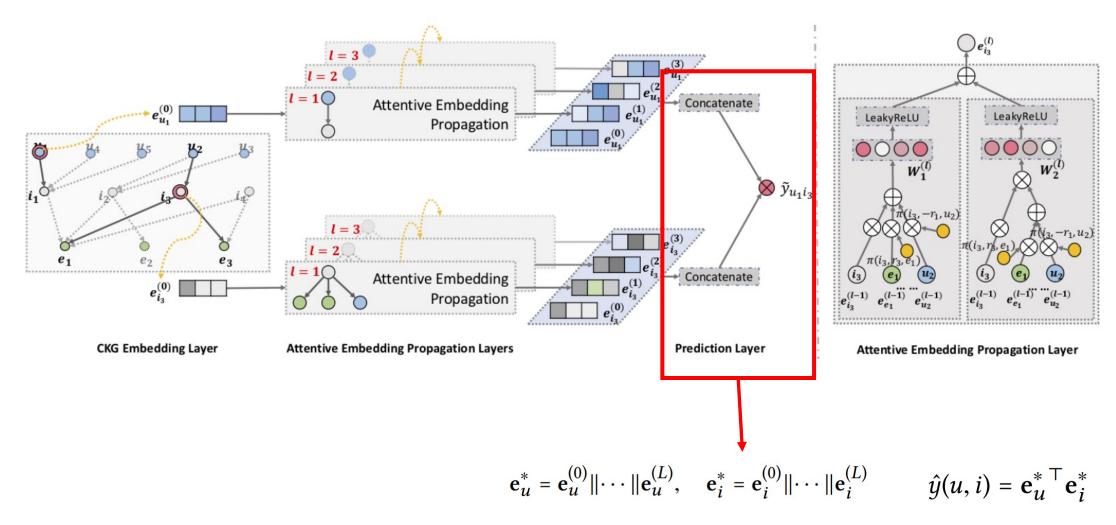


Information Propagation: $\mathbf{e}_{\mathcal{N}_h} = \sum_{(h, r, t) \in \mathcal{N}_h} \pi(h, r, t) \mathbf{e}_t$

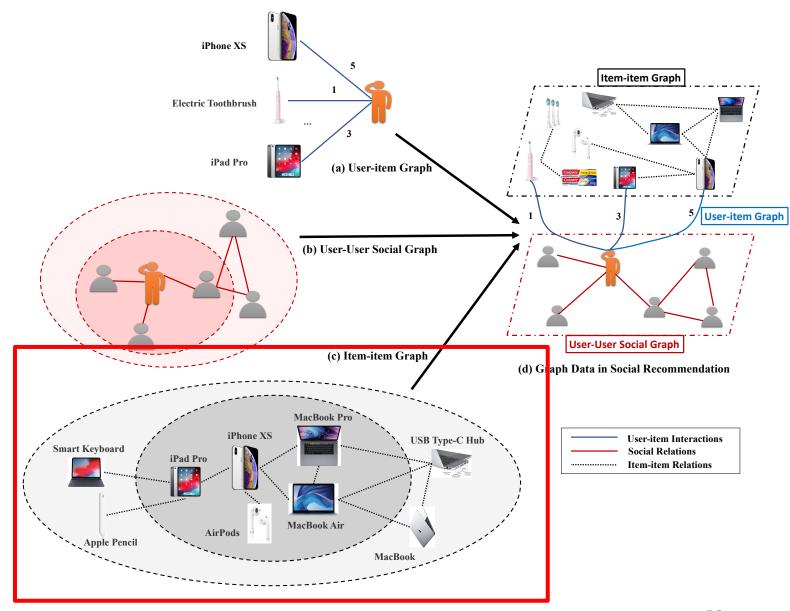
Knowledge-aware Attention: $\pi(h, r, t) = (\mathbf{W}_r \mathbf{e}_t)^{\top} \tanh ((\mathbf{W}_r \mathbf{e}_h + \mathbf{e}_r))$

Information Aggregation: $f_{\text{Bi-Interaction}} = \text{LeakyReLU}(\mathbf{W}_1(\mathbf{e}_h + \mathbf{e}_{\mathcal{N}_h})) +$

LeakyReLU $(\mathbf{W}_2(\mathbf{e}_h \odot \mathbf{e}_{\mathcal{N}_h}))$,



GraphRec+

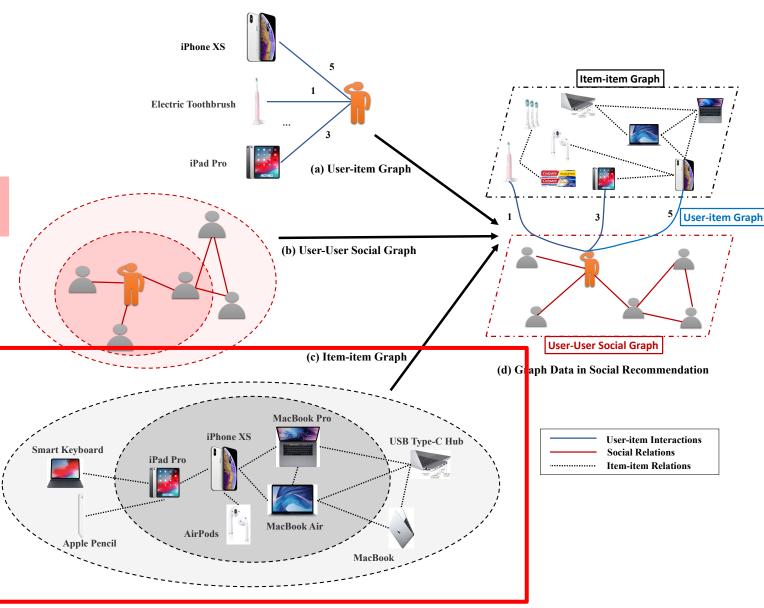


GraphRec+

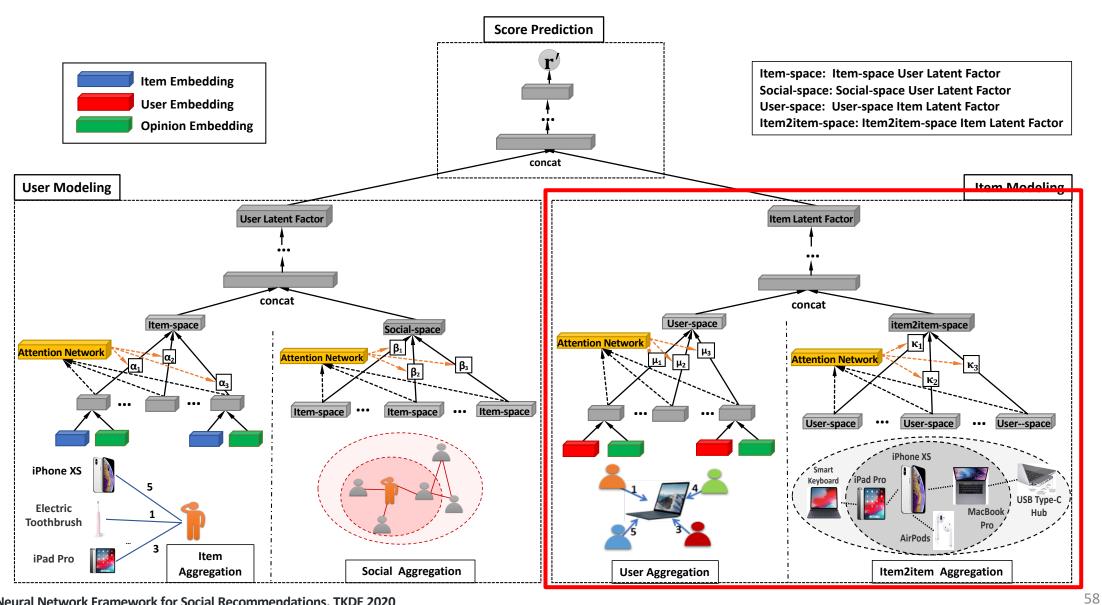
Substitutable and Complementary Items

E.g.,

- 'users who bought A also bought B'
- 'users who viewed A also viewed B'



GraphRec+



Conclusion: Future Directions

When the deeper GNNs can help in recommender systems?

Conclusion: Future Directions

Depth

When the deeper GNNs can help in recommender systems?

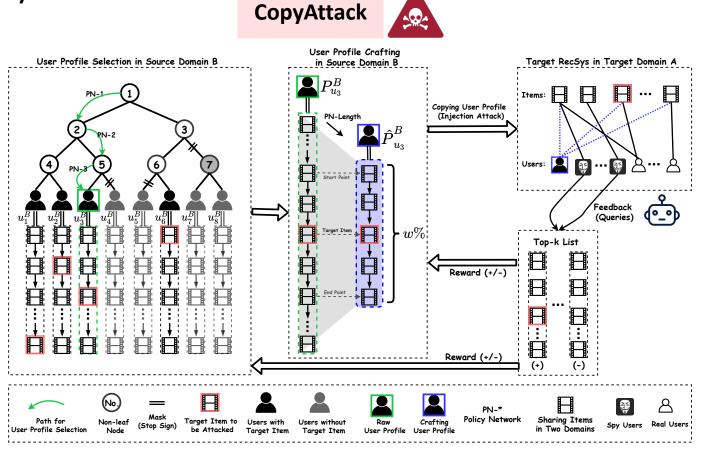
- Security (Data Poisoning Attack & Defense)
 - Edge
 user-item interactions
 social relations
 knowledge graph
 - ➤ Node (users/items) Features
 - Local Graph Structure

Conclusion: Future Directions

Depth

When the deeper GNNs can help in recommender systems?

- Security (Data Poisoning Attack & Defense)
 - Edge
 user-item interactions
 social relations
 knowledge graph
 - Node (users/items) Features
 - Local Graph Structure



Ads

- Wenqi Fan, Computing, The Hong Kong Polytechnic University
- wenqifan@polyu.edu.hk
- https://wenqifan03.github.io

I am actively recruiting self-motivated Ph.D. students, Master, and Research Assistants. Visiting scholars and interns are also welcome. Send me an email with your CV if you are interested.